FIRE EXTINGUISHER TYPES AND APPLICATIONS

Authors

  • Muhammad Ahmad Baballe
  • Abdulrahman Yusuf Abdullahi
  • Mukhtar Ibrahim Bello
  • Sadiku Aminu Sani

Keywords:

Extinguisher device, Fire Outbreak, Fire Safety

Abstract

In any environment, fire extinguishers are an essential part of any fire safety strategy. They are a first-aid response to a fire and can assist in preventing severe property damage and even fatalities in homes,businesses, and even automobiles. The selection of an extinguisher device, which incorporates both passive and active fire safety procedures, offers the right intervention in the event of a potential fire outbreak. In the past and in the present, fire has been a major source of property loss and fatalities. If the appropriate steps are not done, they may result in significant property damage, process interruptions, death, and injury. The density of flammable, explosive, and dangerous substances, chimneys, hot surfaces, static electricity, and electrical dangers, particularly in industrial buildings, increases the risk of fire. Therefore, the appropriate safety measures should be performed.

Author Biographies

Muhammad Ahmad Baballe

Department of Computer Engineering Technology, School of Technology, Kano State Polytechnic,Kano, Nigeria.

Abdulrahman Yusuf Abdullahi

Department of Electrical Enineering, Kano University of Science and Technology Wudil, Kano,Nigeria

Mukhtar Ibrahim Bello

Department of Computer Science, School of Technology, Kano State Polytechnic, Kano, Nigeria.

Sadiku Aminu Sani

Department of Architectural Technology,School of EnvironmentalStudies Gwarzo, Kano State Polytechnic,Kano, Nigeria.

References

Brushlinsky, N. N., Ahrens, M., Sokolov, S. V., Wagner, P. (2016). World fire statistics. Cent. fire statistics., 10.

Woodrow, B. (2012). Fire as Vulnerability: The Value Added from Adopting a Vulnerability Approach. World Fire Stat.Bull. Valéria Pacella.

Pastor, E., Zárate, L., Planas, E., Arnaldos, J. (2003). Mathematical models and calculation systems for the study of wildland fire behaviour. Progress in Energy and Combustion Science, 29 (2), 139–153. doi:https://doi.org/10.1016/s0360-1285(03)00017-0

Masellis, M., Ferrara, M. M., Gunn, S. W. A. (1999). Fire disaster and burn disaster: Planning and management. Annals ofBurns and Fire Disasters, 12, 67–76.

Jamesdaniel, S., Elhage, K. G., Rosati, R., Ghosh, S., Arnetz, B., Blessman, J. (2019). Tinnitus and Self-Perceived Hearing Handicap in Firefighters: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 16

(20), 3958.doi: https://doi.org/10.3390/ijerph16203958

Tedim, F., Leone, V., McCaffrey, S., McGee, T. K., Coughlan, M., Correia, F. J. M., Magalhães, C. G. (2020). Safety enhancement in extreme wildfire events. Extreme Wildfire Events and Disasters. Elsevier, 91–115. doi:https://doi.org/10.1016/b978-0-12-815721-3.00005-9

Heydari, A., Ostadtaghizadeh, A., Ardalan, A., Ebadi, A., Mohammadfam, I., Khorasani-Zavareh, D. (2022). Exploring thecriteria and factors affecting firefighters’resilience: A qualitative study. Chinese Journal of Traumatology, 25 (2), 107–114.

doi: https://doi.org/10.1016/j.cjtee.2021.06.001

Yoon, J.-H., Kim, Y.-K., Kim, K. S., Ahn, Y.-S. (2016). Characteristics of Workplace Injuries among Nineteen Thousand Korean Firefighters. Journal of Korean Medical Science, 31 (10), 1546. doi: https://doi.org/10.3346/jkms.2016.31.10.1546

Khoon, T. N., Sebastian, P., Saman, A. B. S. (2012). Autonomous Fire Fighting Mobile Platform. Procedia Engineering, 41,1145–1153. doi: https://doi.org/10.1016/j.proeng.2012.07.294

im, J.-H., Starr, J. W., Lattimer, B. Y. (2014). Firefighting Robot Stereo Infrared Vision and Radar Sensor Fusion for Imaging through Smoke. Fire Technology, 51 (4), 823–845. doi: https://doi.org/10.1007/s10694-014-0413-6

ivakumar, E. V., Manoj, P., Pumithadevi, S., Sylvia, S. S., Thangaraj, M. (2016). Voice Controlled Intellegent Fire Extinguisher Robot. International Journal for Science and Advance Research in Technology, 2, 65–67.

onal, M., Bharat, M., Saraswati, S., Bansude, V. U. (2017). Fire Fighting Robot. International Research Journal of Engineering and Technology, 4, 136–138.

ijayalakshmi, B., Vasanth, A., Kumar, S. V., Raj, S. N. (2017). Autonomous Fire Fighting Robot With Self Power Management.International Journal of Scientific Engineering and Research, 8, 234–237.

ucuoglu, H. S., Bogrekci, I., Demircioglu, P. (2018). Development of Mobile Robot with Sensor Fusion Fire Detection Unit.IFAC-PapersOnLine, 51 (30), 430–435. doi: https://doi.org/10.1016/j.ifacol.2018.11.324

liff, M., Samsiah, N., Yusof, M., Zainal, A. (2019). Development of Fire Fighting Robot (QRob). International Journal of Advanced Computer Science and Applications, 10 (1). doi: https:// doi.org/10.14569/ijacsa.2019.0100118

handra, P. S., Revathi, V., Sireesha, A., Kumar, N. S. (2019). Development of DTMF Centred Remotely Located Fire Extinguishing Robot. International Journal of Innovative Technology and Exploring Engineering, 9 (1), 39–43. doi:https://doi.org/ 10.35940/ijitee.a3902.119119

himan, A., Shah, N., Adhikari, P., Kumbhar, S., Dhanjal, I., Mehendale, N. (2020). Fire Fighter Robot with Deep Learning and Machine Vision. SSRN Electronic Journal. doi: https://doi.org/ 10.2139/ssrn.3633609

lzubaidi, L., Zhang, J.,Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O. et al. (2021). Review of deep learning:concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8 (1). doi:https://doi.org/10.1186/ s40537-021-00444-8

iu, H., Lang, B. (2019). Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey. Applied Sciences, 9 (20), 4396. doi: https://doi.org/10.3390/app9204396

ajafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R.,Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2 (1). doi: https://doi.org/10.1186/s40537-014-0007-7

hen, C. (2018). A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists.Water Resources Research, 54 (11), 8558–8593. doi: https:// doi.org/10.1029/2018wr022643

titallah, S. B., Driss, M., Boulila, W., Ghézala, H. B. (2020). Leveraging Deep Learning and IoT big data analytics to support the smart cities development: Review and future directions. Computer Science Review, 38, 100303. doi:https://doi.org/ 10.1016/j.cosrev.2020.100303

ang, W., Liang, D., Chen, Q., Iwamoto, Y., Han, X.-H., Zhang, Q. et al. (2019). Medical Image Classification UsingDeep Learning. Deep Learning in Healthcare. Springer, 33–51. doi: https:// doi.org/10.1007/978-3-030-32606-7_3.

apernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., Swami, A. (2016). The Limitations of Deep Learning in Adversarial Settings.2016 IEEE European Symposium on Security and Privacy (EuroS&P), 372–387. doi:https://doi.org/10.1109/ eurosp.2016.36

horten, C., Khoshgoftaar, T. M., Furht, B. (2021). Deep Learning applications for COVID-19. Journal of Big Data, 8 (1).doi: https://doi.org/10.1186/s40537-020-00392-9

dendhran, R., Balamurugan, M., Suresh, A., Varatharajan, R. (2020). Enhancing image processing architecture using deep learning for embedded vision systems. Microprocessors and Microsystems, 76, 103094. doi:https://doi.org/10.1016/j.micpro.2020.103094

eng, X., Zhang, X., Li, Y., Liu, B. (2020). Research on image feature extraction and retrieval algorithms based on convolutional neural network. Journal of Visual Communication and Image Representation, 69, 102705. doi:https://doi.org/10.1016/ j.jvcir.2019.102705

amprasath, M., Anand, M. V., Hariharan, S. (2018). Image classification using convolutional neural networks. International Journal of Pure and Applied Mathematics, 119 (17), 1307–1319.

Liang, G., Hong, H., Xie, W., Zheng, L. (2018). Combining Convolutional Neural Network With Recursive Neural Networkfor Blood Cell Image Classification. IEEE Access, 6, 36188–36197. doi: https://doi.org/10.1109/access.2018.2846685

Albawi, S., Mohammed, T. A., Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 InternationalConference on Engineering and Technology (ICET). doi: https://doi.org/ 10.1109/icengtechnol.2017.8308186

Ajit, A., Acharya, K., Samanta, A. (2020). A Reviewof Convolutional Neural Networks. 2020 International Conference onEmerging Trends in Information Technology and Engineering (IcETITE). doi: https://doi.org/10.1109/ic-etite47903.2020.049

Shaheen, F., Verma, B., Asafuddoula, Md. (2016). Impact of Automatic Feature Extraction in Deep Learning Architecture.2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA). doi:https://doi.org/10.1109/ dicta.2016.7797053

Elangovan, P., Nath, M. K. (2020). Glaucoma assessment from color fundus images using convolutional neural network.International Journal of Imaging Systems and Technology, 31 (2), 955–971. doi: https://doi.org/10.1002/ima.22494

Elkhayati, M., Elkettani, Y. (2022). UnCNN: A New Directed CNN Model for Isolated Arabic Handwritten CharactersRecognition. Arabian Journal for Science and Engineering, 47 (8), 10667–10688. doi: https://doi.org/10.1007/s13369-022-06652-5

Li, Z., Ren, K., Jiang, X., Li, B., Zhang, H., Li, D. (2022). Domain generalization using pretrained models without finetuning.doi: https://doi.org/10.48550/arXiv.2203.04600

Mehrotra, R., Ansari, M. A., Agrawal, R., Anand, R. S. (2020). A Transfer Learning approach for AI-based classification ofbrain tumors. Machine Learning with Applications, 2, 100003. doi: https://doi.org/10.1016/j.mlwa.2020.100003

Yao, Y., Doretto, G. (2010). Boosting for transfer learning with multiple sources. 2010 IEEE Computer Society Conferenceon Computer Vision and Pattern Recognition, 1855–1862. doi: https:// doi.org/10.1109/cvpr.2010.5539857

Bouhamed, O., Ghazzai, H., Besbes, H., Massoud, Y. (2020). Autonomous UAV Navigation: A DDPG-Based DeepReinforcement Learning Approach. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). doi:https://doi.org/10.1109/ iscas45731.2020.9181245.

Saif, A., Muneer, G., Abdulrahman, Y., Abdulbaqi, H., Abdullah, A., Ali, A., Derhim, A. (2022). Developing a prototype offire detection and automatic extinguisher mobile robot based on convolutional neural network. Technology Audit andProduction Reserves, 6 (1 (68)), 15–23. doi: https://doi.org/ 10.15587/2706-5448.2022.269861.

Un, C.; Ayd?n, K. “Modernization of Fire Vehicles withNew Technologies and Chemicals”,2023, 5, 682–697. https://doi.org/10.3390/vehicles5020037.

Jang, D.-J., & Kong, H.-S.“Development of a safety education program using simulator fire extinguishers in Korea: Focusingon elementary school students”,Journal of Education and E-Learning Research, 10(2), 294–298.2023,10.20448/jeelr.v10i2.4603.

G.Vijayalakshmi,et al., “DAF Extinguisher for on Road Vehicles”,E3S Web of Conferences 399, 05004 (2023), pp. 1-5,https://doi.org/10.1051/e3sconf/202339905004.

B. Swetha Sampath, “Hardware based Automatic Fire Extinguisher Robot”, pp.1-4, 12th International Conference on Control,Automation and Systems Oct. 17-21, 2012 in ICC, Jeju Island, Korea.

Mesut U., Hasan ?., “An integrated approach for fire extinguishers selection with DEMATEL and TODIM methods”,bmij2021,9 (4):1696-1707,doi:https://doi.org/10.15295/bmij.v9i4.1928.

M. A. Baballe, A. L. Musa, M. A. Sadiq, I. Idris Giwa, U. s. Farouk, & Aminu Ya'u. (2022). Temperature Detection Systemimplementation. Global Journal of Research in Medical Sciences, 2(5), 92–97.https://doi.org/10.5281/zenodo.7126185.

M. A. Baballe, M. I. Bello, A. A. Umar, A. K. Shehu, D. Bello, & F. T. Abdullahi. (2022). A Look at the Different Types ofServo Motors and Their Applications. Global Journal of Research in Engineering& Computer Sciences, 2(3), 1–6.https://doi.org/10.5281/zenodo.6554946.

Abdu I. A., Abdulkadir S. B., Amina I., &M. A. Baballe. (2023). The Several uses for Obstacle-Avoidance Robots. GlobalJournal of Research in Engineering & Computer Sciences, 3(3), 11–17.https://doi.org/10.5281/zenodo.8030172.

Muhammad AhmadBaballe, Mukhtar Ibrahim Bello, & Zainab Abdulkadir. (2022). Study on Cabot's Arms for Color, Shape,and Size Detection. Global Journal of Research in Engineering & Computer Sciences, 2(2), 48–52.

https://doi.org/10.5281/zenodo.6474401.

.A. Baballe, A. I. Adamu, Abdulkadir S. B., & Amina I. (2023). Principle Operation of a Line Follower Robot. Global Journal of Research in Engineering & Computer Sciences, 3(3), 6–10.https://doi.org/10.5281/zenodo.8011548.

MuhammadA.B, Mukhtar I.B., Adamu H., Usman S.M., “Pipeline Inspection Robot Monitoring System”, Journal ofAdvancements in Robotics, Volume 9, Issue 2, 2022 DOI (Journal): 10.37591/JoARB.

. A. Baballe, M. I. Bello, A. Abdullahi Umar, A. S. Muhammad, Dahiru Bello, & Umar Shehu. (2022). Pick and Place Cabot's' Arms for Color Detection. Global Journal of Research in Engineering & Computer Sciences, 2(3).

https://doi.org/10.5281/ zenodo.6585155.

. A. Baballe, M. I. Bello, A. Abdullahi Umar, A. S. Muhammad, Dahiru Bello, & Umar Shehu. (2022). Pick and Place Cabot's' Arms for Color Detection. Global Journal of Research in Engineering & Computer Sciences, 2(3).https://doi.org/10.5281/ zenodo.6585155.

Abdulkadir S. B, Muhammad A. F, Amina I., Mukhtar I. B, & M. A. Baballe. (2023). Elements needed to implement theObstacle-Avoidance Robots. Global Journal of Research in Engineering & Computer Sciences, 3(3), 18–27.https://doi.org/10.5281/zenodo.8051131.

Muhammad B. A., Abubakar S. M., “A general review on advancement in the robotic system”, Artificial & ComputationalIntelligence / Published online: Mar 2020http://acors.org/ijacoi/VOL1_ISSUE2_04.pdf.

ehmet Ç,Muhammad B.A, “A Review on Spider Robotic System”,International Journal of New Computer Architectures and their Applications (IJNCAA) 9(1): 19-24, 2019.

bdulkadir S. B., et al., “Forest Fires: Challenges and Impacts”,Global Journal of Research in Engineering & Computer Sciences ISSN: 2583-2727 (Online) Volume 02|Issue 04 | July-Aug. | 2022 Journal homepage:https://gjrpublication.com/gjrecs/.

https://www.checkfire.co.uk/fire-safety-news/the-importance-of-fire-extinguishers/.

Muhammad A.B., Mukhtar I.B.,“A Comparative Study on Gas Alarm Detection System”,Global Journal of Research inEngineering & Computer Sciences Volume 02| Issue 01 | Jan-Feb | 2022 Journal homepage:https://gjrpublication.com/journals/.

Muhammad A.B, et al.,“Automatic Gas Leakage Monitoring System using Mq-5 Sensor”,Review of Computer EngineeringResearch 2021 Vol. 8, No. 2, pp. 64-75. ISSN(e): 2410-9142 ISSN(p): 2412-4281 DOI: 10.18488/journal.76.2021.82.64.75.

uhammad A. B, Mukhtar I. B., “Gas Leakage Detection System with Alarming System”,Review of Computer Engineering Research 2022 Vol. 9, No. 1, pp. 30-43. ISSN(e): 2410-9142 ISSN(p): 2412-4281 DOI: 10.18488/76.v9i1.2984.

. S. Bari, M. A. Falalu, M. A. Umar, Y. Y. Sulaiman, A. M. Gamble, & M. A. Baballe. (2022). Accident Detection and Alerting Systems: A Review. Global Journal of Research in Engineering & Computer Sciences, 2(4), 24–29.https://doi.org/10.5281/zenodo.7063008.

M.A.Baballe, Aminu Ya'u, S.F.Ibrahim, Abdulmuhamin M., &N.K.Mustapha. (2023). Accident Detection System with GPS,GSM, and Buzzer. Global Journal of Research in Engineering & Computer Sciences, 3(1), 8–14.https://doi.org/10.5281/

zenodo.7655016.63.M. A. Baballe, A. S. Bari, A. L. Musa, N. K. Mustapha, U. H. Hussain, D. Bello, & A. A. Umar. (2022). Car Tracking

System: Pros and Cons. Global Journal of Research in Humanities & Cultural Studies, 2(5), 188–191.https://doi.org/10.5281/zenodo.7102272.

Muhammad A. B., Mukhtar I. B., Abdulhamid S. M., “Comparative Study of Gas Alarm Detection System”, Journal ofTelecommunication Control and Intelligent System (JTCIS) E-ISSN: 2808-182X Volume 1, Issue 2, 2021.

ttps://www.statefarm.com/simple-insights/residence/fire-extinguishers.

Published

2024-02-27

How to Cite

1.
Baballe MA, Abdulrahman Yusuf Abdullahi, Mukhtar Ibrahim Bello, Sadiku Aminu Sani. FIRE EXTINGUISHER TYPES AND APPLICATIONS. se [Internet]. 2024Feb.27 [cited 2025Nov.13];1(12):08-13. Available from: https://iphopen.org/index.php/se/article/view/67