Ecological protection of plants using biological products from the basidiomycete fungus Fomes fomentarius
DOI:
https://doi.org/10.5281/zenodo.17301016Keywords:
Plant protection, Plant resistance, Resistance inducer, Biological products, Glucans, MelaninsAbstract
The constant use of pesticides and mineral fertilizers, which destroy biological diversity in the soil, reduce the humus content and lead to a decrease in the yield of plants (corn, soybeans, rice, wheat) with the most valuable consumer properties and high susceptibility to diseases.
The effectiveness of the best resistance-inducing drugs reaches only 60-80% of the effectiveness of biocidal drugs.But they are not toxic, do not have a detrimental effect on the ecological system, are safe for humans (they do not have residual amounts of toxic chemicals in the product), increase immunity to pathogens, and increase resistance to drought, cold, temperature changes, and pests.
Only the successful provision of the world's population with a quality product depends on the development of organic farming, which involves the use of only natural means to combat plant pests.Therefore, the main focus of our work was on testing a plant resistance inducer of an aqueous extract of the glucan-melanin complex (GMC) of the cell wall of the basidiomycete fungus Fomes fomentarius called mikosan, which exhibits powerful antioxidant, antibacterial, fungicidal, and antiviral activities.It is GMC that induces plant resistance to diseases by enhancing the synthesis of enzymes to resist infection and switching some metabolic reactions from the biosynthesis of constitutive metabolic compounds to the synthesis of phytoalexins and other antipathogenic substances.
Mikosan underwent a full program of laboratory, small-scale, field industrial tests on many agricultural crops in different climatic zones of Ukraine, as well as toxicological studies, starting in 1998. It belongs to the fourth, lowest category of toxicity registered in Ukraine at the beginning of 2002.
References
Iizumi T., Yokozawa M., Sakurai G., Travasso M. I., Romanenkov V., Oettli P., Newby T., Ishigooka Y.,
Furuya J. Historical changes in global yields: major cereal and legume crops from 1982 to 2006. Global
Ecology and Biogeography, (Global Ecol. Biogeogr.) (2014) 23, 346–357.
Stukenbrock EH1
, McDonald BA. The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol.
;46:75-100. DOI: 10.1146/annurev.phyto.010708.154114.
Huang, D., Haack, R.A. & Zhang, R. (2011) Does global warming increase establishment rates of invasive
alien species? A centurial time series analysis. PLoS ONE, 6, e2473].
Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L. & Gurr, S.J. (2012)
Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186–194. 5.Bebber D.P.,
Ramotowski M.A.T. & Gurr S.J. (2013) Crop pests and pathogens move polewards in a warming world.
Nature Climate Change, 3, 985–988. DOI:10.1038/nclimate1990.
Bebber D.P., Holmes T., Gurr S.J. The global spread of crop pests and pathogens. Global Ecology and
Biogeography. Vol. 23, Issue 12, p. 1398–1407, Dec. 2014 DOI: 10.1111/geb.12214.
Reignault P., Walters D. Topical application of inducers for disease control. In: Induced resistance for plant
defence: a sustainable approach to crop protection. Eds: Walters D., Newton A., Lyon G. D. Blackwell
Publishing Ltd., Oxford, UK. 2007, pp. 179-200. ISBN: 978-1-4051-3447-
Anke T., Oberwinkler F. (1977). The strobilurins new antifungal antibiotics from the basidiomycete
Strobilurus tenacellus. J. Antibiot. 30, 806-810. Robles-Hermandes L., Cecikia-Gjyzales-Franco A., SotoParra J. M., Montes-Dominguez F. Review of agricultural and medicinal applications of basidiomycete
mushrooms. Technociencia, Vol. II, No. 2. 2008 95-107;
Lorenzen, K. & Anke, T. (1998). Basidiomycetes as a sources for new bioactive natural products. Current
Organic Chemistry, 2, pp. 329-364.
Gorovoy, L.F. Induced resistance and development of new generation preparations for plant protection //
Quarantine and plant protection. -2004. ? 11. pp. 8-11 (ukr);
Gorovyi L.F., Koshevsky I.I., Teslyuk V.V., Redko V.V. Method of increasing plant resistance to diseases.
Patent of Ukraine for a utility model ? 29953. 11.02.2008 (ukr);
Lyon G. Agents that can elicit induced resistance. In: Induced resistance for plant defence: a sustainable
approach to crop protection. Eds: Walters D., Newton A., Lyon G. D. Blackwell Publishing Ltd., Oxford,
UK. 2007, pp. 9-30. ISBN: 978-1-4051-3447-7;
Mishra A. K., Sharma K., Misra R. S. Elicitor recognition, signal transduction and induced resistance in
plants. Journal of Plant Interactions. Volume 7, Issue 2, 2012 pages 95-120. DOI: 10.1080/
2011.597517.
Garcion C., Lamotte O., Métraux J.-P. Mechanisms of defence to pathogens: biochemistry and physiology.
In: Induced resistance for plant defence: a sustainable approach to crop protection. Eds: Walters D., Newton
A., Lyon G. D. Blackwell Publishing Ltd., Oxford, UK. 2007, pp. 109-132. ISBN: 978-1-4051-3447-7.
Bellincampi D., Cervone F., Vincenzo L.. Plant cell wall dynamics and wall-related susceptibility in plant–
pathogen interactions. Front Plant Sci. 2014; 5: 228. Published online 2014 May 28.
DOI: 10.3389/fpls.2014.00228.
Vleeshouwers V. G. A. A., and Oliver R. P. Effectors as Tools in Disease Resistance Breeding Against
Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens. Molecular Plant-Microbe Interaction.
CURRENT REVIEWS: FOCUS ISSUE March 2014, Volume 27, Number 3 Pages 196-206. DOI:
1094/MPMI-10-13-0313-IA;
Cho Y. How the Necrotrophic Fungus Alternaria brassicicola Kills Plant Cells Remains an Enigma.
Eukaryotic Cell April 2015 vol. 14 no. 4 335-344. DOI: 10.1128/EC.00226-14.
Dunoyer P., Melnyk C., Molnar A., Slotkin R. K. Plant Mobile Small RNAs. Cold Spring Harb Perspect
Biol July 2013;5:a017897.
Gandhi S. G., Mahajan V., Bedi Y. S. Changing trends in biotechnology of secondary metabolism in
medicinal and aromatic plants. Planta. An International Journal of Plant Biology 2014 241:2232.
DOI: 10.1007/s00425-014-2232-x.
Thakur M., Sohal B. S. Role of Elicitors in Inducing Resistance in Plants against Pathogen Infection: A
Review. ISRN Biochemistry, Volume 2013 (2013), Article ID 762412, 10 pages. DOI:
1155/2013/762412.
Newman M.-A., Sundelin T., Nielsen J. T., Erbs G. (2013). MAMP (microbe-associated molecular pattern)
triggered immunity in plants. Front. Plant Sci. 4:139. DOI: 10.3389/fpls.2013.00139;
Zipfel C. Plant pattern-recognition receptors. Trends Immunol. 2014 Jul;35(7):345-51. DOI:
1016/j.it.2014.05.004;
Lannoo N. Damme E. J. M. Van. Lectin domains at the frontiers of plant defense. Front Plant Sci. 2014; 5:
DOI: 10.3389/fpls.2014.00397;
Liu X., Grabherr H. M, Willmann R., Kolb D., Brunner F., Bertsche U., Kühner D., Franz-Wachtel M.,
Amin B., Felix G., Ongena M., Nürnberger T., Gust A. A. Host-induced bacterial cell wall decomposition
mediates pattern-triggered immunity in Arabidopsis. eLife 2014;3:e01990. DOI: 10.7554/eLife.01990
Tanaka K., Choi J., Cao Y., Stacey G. Extracellular ATP acts as a damage-associated molecular pattern
(DAMP) signal in plants. Front Plant Sci. 2014; 5: 446. DOI: 10.3389/fpls.2014.00446.
Trouvelot S., Héloir M.-C., Poinssot B., Gauthier A., Paris F., Guillier C., Combier M., Trdá L., Daire X.,
Adrian M. Carbohydrates in plant immunity and plant protection: roles and potential application as foliar
sprays. Front Plant Sci. 2014; 5: 592. DOI: 10.3389/fpls.2014.00592.
Lyon G. Agents that can elicit induced resistance. In: Induced resistance for plant defence: a sustainable
approach to crop protection. Eds: Walters D., Newton A., Lyon G. D. Blackwell Publishing Ltd., Oxford,
UK. 2007, pp. 9-30. ISBN: 978-1-4051-3447-7.
Reignault P., Walters D. Topical application of inducers for disease control. In: Induced resistance for plant
defence: a sustainable approach to crop protection. Eds: Walters D., Newton A., Lyon G. D. Blackwell
Publishing Ltd., Oxford, UK. 2007, pp. 179-200. ISBN: 978-1-4051-3447-7.
Kombrink A1
, Sánchez-Vallet A, Thomma BP. The role of chitin detection in plant--pathogen interactions.
Microbes Infect. 2011 Dec;13(14-15):1168-76. DOI: 10.1016/j.micinf.2011.07.010.;
Sánchez-Vallet A., Mesters J. R., Thomma B.P.H.J. The battle for chitin recognition in plant-microbe
interactions. FEMS Microbiology Reviews. 2015 Volume 39, Issue 2 Pp. 171 - 183 DOI:
1093/femsre/fuu003
Nicolaus G.L. Melanins – Paris: Herman, 1968. – 127 p.
Ramegowda V., Senthil-Kumar M. The interactive effects of simultaneous biotic and abiotic stresses on
plants: Mechanistic understanding from drought and pathogen combination. Journal of Plant Physiology
Volume 176, 15 March 2015, Pages 47–54, DOI: 10.1016/j.jplph.2014.11.008.
Aoki M., Tan M., Fukushima A., Hieda T., Kubo S., Takabayashi M., Ono K., Mikami Y. (1993) Antiviral
Substances with Systemic Effects Produced by Basidiomycetes such as Fomes fomentarius, Bioscience,
Biotechnology, and Biochemistry, 57:2, 278-282, DOI: 10.1271/bbb.57.278.
Seniuk O.F., Gorovoj L.F., Beketova G.V., Savichuk N.O., Rytik P.G., Kucherov I.I., Prilutskaya A.B.,
Prilutsky A.I. Anti-Infective Properties of the Melanin-Glucan Complex Obtained from Fomes fomentarius.
International Journal of Medicinal Mushrooms, 2011, V. 13, N 1, pp. 7-18.
Dresch P., D´Aguanno M. N., Rosam K., Grienke U., Rollinger J. M., Peintner U. Fungal strain matters:
colony growth and bioactivity of the European medicinal polypores Fomes fomentarius, Fomitopsis pinicola
and Piptoporus betulinus. AMB Express (2015) 5:4. DOIL 10.1186/s13568-014-0093-0.
Gorovoy L.F., Burdyukova L.I. The cell wall of higher basidial fungi. Cytology and genetics. 1997, ?. 31,
pp. 70 – 81 (ukr).
Walters D.R., Ratsep J., Havis N.D. Controlling crop diseases using induced resistance: challenges for the
future. J. Exp. Bot. (2013) 64 (5): 1263-1280. DOI: 10.1093/jxb/ert026.
Anand Y.R., Singh S.J., Verma D.K., Panyam K.R., Sumitra P, Meitei KH. M., Gurumurthy S., Asthir B.
Recent Advances In Induced Resistance for Plant Disease Management: An Overview. Innovation in
Plant Science and Biotechnology.
Bogaeva D., 2021; SPECIAL PROPERTIES AND USES OF MELANIN Student Resource Center
«Medical Sechenov Pre-Universarium» FGAOU VO «First Moscow State Medical University».
Yu. Vlasova AND. Influence of UV radiation and metal ions of variable valence on the antioxidant activity
of melanin. Proceedings of the 69th scientific conference of students and postgraduates of the Belarusian
State University, May 14-17, 2012, Minsk. At 3 p. P. I.- Minsk, 2013. pp. 7-10 (rus).
Gorovoj L., Seniouk O., Beketova G., Savichuk N., Amanbaeva G. Use of the chitin-containing preparation
Mycoton in pediatric gastroenterology Chitosan inpharmacy and chemistry / eds Muzzarelli R.A.A. Atec,
– P. 151-155.
Iutynskaya G.A., Ponomarenko S.P., Andreyuk E.I. and others. Bioregulation of microbial and plant
systems: / Under general editor. HA. Iutynskoi, S. P. Ponomarenko. - K.: Nychlava, 2010. – 464 P (rus).
Pletnikova N.V. Root rots of winter wheat. Protection of crops // Agrovisnyk of Ukrain–2008. –?3. –
pp.54–56 (ukr).
Gorovoi L.F. Biological means of plant protection and biotechnology of their production. Prospects and
problems of the development of biotechnology within the framework of the common economic space of the
Commonwealth of Nations. Materials of the international scientific and practical conference. May 25-28,
Minsk - Naroch, Republic of Belarus. Minsk, 2005.pp. 50-51 (rus).
Gorovoi L.F. Biologically active substances of cap mushrooms. Biologically active substances of plants in
medicine, agriculture and other industries. Materials of the international scientific and practical conference
(Narochanskie chtenia - 2). Minsk-Naroch, September 27-30. 2006. Minsk, 2006, pp. 27-37 (rus).
Trade-offs associated with induced resistance. In: Induced resistance for plant defence: a sustainable
approach to crop protection. Eds: Walters D., Newton A., Lyon G. D. Blackwell Publishing Ltd., Oxford,
UK. 2007, pp. 157-178. ISBN: 978-1-4051-3447-7.
Walters D, Heil M. 2007. Costs and trade-offs associated with induced resistance. Physiological and
Molecular Plant Pathology 71, 3–17.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 IPHO-Journal of Advance Research in Pharmacy & Biological Science

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Author(s) and co-author(s) jointly and severally represent and warrant that the Article is original with the author(s) and does not infringe any copyright or violate any other right of any third parties and that the Article has not been published elsewhere. Author(s) agree to the terms that the IPHO Journal will have the full right to remove the published article on any misconduct found in the published article.