
Print ISSN: 3050-9270 Online ISSN: 3050-8797

https://iphopen.org/index.php/se

POWER MANAGEMENT IN EMBEDDED AI SYSTEMS: A MULTI-

LAYERED APPROACH FOR EDGE COMPUTING APPLICATIONS

SENTHIL NATHAN THANGARAJ
*

AMD, USA

Abstract

Power management is a major challenge for embedded AI systems at the network edge. These systems must

run machine learning workloads under tight energy limits.

An effective solution needs a multi-layered approach. Key elements include the Power State Coordination

Interface (PSCI), secure firmware, and Linux kernel features for runtime control. Core techniques such as

dynamic frequency scaling, clock gating, suspend/resume, and memory or accelerator-specific optimizations

further improve efficiency.

Environmental factors add to the challenge. Automotive and industrial systems must meet strict thermal

limits. Battery-powered devices face even tighter energy budgets. Both require adaptive control strategies.

From a software perspective, effective methods include specialized kernel drivers, standardized power APIs,

and optimizations such as dynamic logic gating and real-time power monitoring. When combined, these

enable power-efficient AI systems that maintain reliable performance while staying within thermal and

energy boundaries.

Keywords: Edge Computing, Embedded AI Systems, Power Management, System-on-Chip Architectures,

Thermal Constraints

*Corresponding Author: Senthil Nathan Thangaraj

 Manuscript # 278 nu script ID # 230aM

 Manu script # 371

 IPHO-Journal of Advance Research in Science And Engineering (IPHO)

Volume-03 | Issue-11 | November | 2025 https://iphopen.org/index.php/se 32

DOD IO :I:-10.5281/zenodo.17678252

1. Introduction

AI at the network edge brings strict power management challenges for embedded systems. These platforms must

run complex machine learning models under tight energy and thermal limits [1]. To handle this, they use

heterogeneous SoCs that combine CPUs, GPUs, NPUs, and other accelerators. Each of these has a different

power profile.

Conventional power management methods, built for general-purpose computing, often fall short for AI

workloads. Edge AI tasks are bursty. They shift between idle periods and intense computation. This behavior

requires careful coordination of power states to stay efficient. In battery-powered devices, runtime and

reliability depend directly on power use [1].

The move to edge computing makes power efficiency even more critical. Processing data locally reduces

latency. It enables real-time decisions and lowers reliance on the cloud [2]. Applications such as autonomous

driving, industrial automation, and smart monitoring all need consistent performance within strict power and

timing limits.

This paper explores a multi-layered approach to power management in embedded AI systems. We look at

coordination across firmware, bootloaders, and operating systems. Standardized interfaces help synchronize

power states across different components. We also study how dynamic resource allocation can balance

performance, thermal limits, and energy efficiency. Finally, we present design principles for reliable and power-

optimized edge AI systems.

2. Multi-Layered Power Management Architecture in AI SoCs

Fig 1: Multi-Layered Power Management Architecture [3, 4]

Firmware Layer

Modern AI SoCs manage power across several abstraction levels. At the lowest level, firmware provides direct

control over hardware. Trusted Firmware (TF-A) creates a secure environment that regulates access to voltage

regulators, clock generators, and power domain controllers [3]. This layer acts as an isolation barrier between

critical power functions and higher-level software. The separation keeps the system stable during complex

power state changes across CPUs, GPUs, and accelerators.

Specifications (PSCI)

The Power State Coordination Interface (PSCI) defines standard calls between firmware and the operating

system. These calls hide SoC-specific details and let developers write portable software across different

platforms [3]. PSCI supports CPU idle and suspend states, cluster-level power-down, and full system shutdown

or reset. Although hardware-agnostic, vendors can extend it with workload-aware features for AI platforms.

 IPHO-Journal of Advance Research in Science And Engineering (IPHO)

Volume-03 | Issue-11 | November | 2025 https://iphopen.org/index.php/se 33

Bootloader Frameworks

Bootloaders configure essential power settings during startup, before the OS takes control. They set voltage

rails, program clocks, and isolate power domains needed by accelerators and memory [3]. Bootloaders also

sequence power-on across domains and enforce safety checks to prevent damage from unstable supply

conditions.

Operating System Integration

In heterogeneous AI SoCs, the Linux kernel manages runtime power across CPUs, GPUs, and NPUs [4].

Subsystems such as cpufreq, cpuidle, devfreq, and generic power domains (genpd) adjust performance points

dynamically. Governors like schedutil raise or lower operating frequencies based on workload. The OPP and

energy model frameworks give the kernel predictive control of voltage and frequency scaling.

Kernel power control also includes algorithms that anticipate future demand from workload patterns. Runtime

PM subsystems manage individual components while respecting interdependencies defined in the device tree.

This coordination ensures stable power transitions while allowing aggressive optimization during idle periods

[4]. Device drivers then translate abstract requests into hardware register operations for accelerators, memory

controllers, and peripherals.

Application Layer

At the top layer, applications and policies influence how power is managed. Workloads such as vision, speech,

or sensor fusion create highly variable demand. Middleware or safety frameworks enforce minimum

performance levels for critical tasks. User preferences, such as performance or power-saving modes, guide

further allocation. Together, these factors connect real-world use cases with lower-level mechanisms to balance

efficiency and reliability.

3. Core Power Management Technologies and Mechanisms

Fig 2: Core Power Management Technologies [5, 6]

Dynamic Resource Management

Modern AI SoCs use advanced methods to allocate resources based on workload and system state. CPU

frequency scaling lets processors adjust operating speed to balance performance with power limits [5]. These

decisions rely on models of performance and energy use to keep efficiency high across different workloads.

Dynamic voltage and frequency scaling (DVFS) changes both voltage and frequency across CPUs, GPUs, and

NPUs. Feedback loops monitor thermal and performance margins to keep units efficient [5]. Clock gating adds

another layer of savings by shutting off unused logic. This can happen at many levels, from individual gates to

entire subsystems, depending on activity.

 IPHO-Journal of Advance Research in Science And Engineering (IPHO)

Volume-03 | Issue-11 | November | 2025 https://iphopen.org/index.php/se 34

Power State Management

Fine-grained power states allow transitions across domains while keeping the system coherent. Suspend and

resume operations save only essential state, letting non-critical blocks enter deep low-power modes [6].

Algorithms weigh how much state to keep against wake-up speed and energy trade-offs.

Multi-core systems need careful synchronization for power state changes. Caches, shared resources, and

communication must remain consistent across cores [6]. Power domain isolation gives independent control over

functional blocks. This prevents interference between active and inactive circuits and maintains signal integrity.

AI Engine-Specific Optimizations

AI workloads benefit from power methods tailored to neural processing. Memory controllers cut power by

adapting to data movement patterns in inference and training. Techniques include bandwidth allocation,

Temperature-Compensated Self-Refresh (TCSR), Fine-Granularity Refresh (FGR), per-bank refresh, and deep

power-down modes [5]. Memory systems work with AI accelerators to anticipate access and adjust states

proactively.

AI accelerators also use workload-aware power policies. These assign power budgets based on the needs of each

neural network layer while meeting thermal limits [6]. Power allocation frameworks use detailed models of

consumption to predict needs from network structure and input data.

4. Thermal and Power Constraints in Edge AI Applications

Fig 3: Thermal and Power Constraints in Edge Al [7, 8]

Environmental Challenges

Edge AI systems face tough environmental conditions that affect both power and thermal design. Automotive

and industrial deployments often run across extreme temperatures, so they need advanced thermal management

to stay stable [7]. The challenge is greater in enclosed spaces with little airflow or heat dissipation. In these

cases, thermal throttling becomes critical to balance performance while keeping core AI functions alive.

Battery-powered edge devices face additional limits. Portable AI hardware must work within small energy

reserves, which forces tradeoffs between computing power and runtime [7]. Power budgeting algorithms address

this by giving priority to essential AI processing while cutting power to non-critical functions. Good power

control also considers battery discharge behavior, thermal effects on the battery, and changing workload

demands to keep efficiency high across scenarios.

Application-Specific Requirements

Autonomous vehicles bring unique challenges because their AI tasks are safety-critical. Systems for perception,

decision-making, and control must keep running reliably despite temperature swings or heavy power demand

[8]. The architecture must handle compute-heavy jobs like sensor fusion, object detection, and path planning in

real time. At the same time, it has to stay thermally stable inside compact enclosures with little cooling.

Industrial robots also need tailored solutions. These systems mix real-time control with machine learning. They

must meet strict timing for motion and safety while also adapting to tasks like vision, inspection, and

optimization [8]. Power management here must prioritize critical control functions while adjusting power for AI

inference to cut overall consumption.

 IPHO-Journal of Advance Research in Science And Engineering (IPHO)

Volume-03 | Issue-11 | November | 2025 https://iphopen.org/index.php/se 35

Adaptive Control Strategies

Thermal-aware scaling uses sensors across the SoC to track temperature. Control logic then adjusts frequency

and voltage to stay within safe thermal limits [7]. Predictive methods go further by anticipating when violations

might happen and adjusting settings early to avoid performance loss.

Workload-aware power allocation considers both AI patterns and compute demand. It applies dynamic budgets

that shift power toward active tasks while keeping within thermal and energy boundaries [8]. These adaptive

strategies allow edge AI systems to maintain performance across different environments and workloads.

5. Case Studies and Evaluation of Power Management in Edge AI Systems

Power management challenges and strategies are best understood through real-world case studies. Autonomous

vehicles, industrial robotics, and drones each demonstrate how layered power management operates under

different constraints. Across all domains, the guiding principle is clear: safety-critical and mission-critical

systems must always run, while non-essential workloads can be scaled back when resources are tight.

5.1 Autonomous Vehicles

In vehicles, safety drives every power decision. Systems for perception, decision-making, and control must

operate reliably under fluctuating workloads and thermal limits.

Driving Scenario: Approaching a busy intersection

When a vehicle approaches a busy intersection, demand on its computing stack spikes. Multiple sensors capture

high-resolution data, and the AI pipeline must process it in real time for safe navigation. Power management

adapts across layers to ensure responsiveness:

● Sensor Input Surge: Cameras, LiDAR, and radar produce dense data streams. The perception pipeline

sends workload hints through application-level QoS, such as frame deadlines.

● Application Hints to Kernel: QoS constraints map to system-level settings like minimum CPU frequency

or memory bandwidth. The kernel’s pm_qos interface enforces them to prepare accelerators before data

arrives.

● Driver Feedback: As workloads increase, accelerator drivers report utilization metrics. If load is heavy,

they signal the devfreq governor to raise operating points.

● Kernel-Level Adjustments: The kernel increases CPU and accelerator frequencies. The thermal framework

caps non-critical tasks such as infotainment graphics to preserve power.

● Firmware Enforcement: Requests pass through firmware (SCMI/PSCI). Firmware checks them against

safety rules and ensures accelerators stay above certified minimum levels. Voltage regulators adjust

gradually to avoid instability.

● Sustained High Load: During the intersection, perception and planning CPUs run at elevated performance.

Safety-critical tasks continue, while background tasks remain throttled.

● Return to Cruise Mode: After the vehicle clears the intersection, workloads ease. Governors scale

accelerators down, gate idle domains, and lower CPU frequencies to save energy while keeping readiness.

This layered response, application hints, kernel governors, driver feedback, and firmware validation ensure

safety and determinism. Critical perception and planning always get priority, while less important tasks scale

back first.

5.2 Industrial Robotics

Industrial robots combine real-time control with machine learning workloads. Unlike vehicles, which focus

mainly on navigation, robots must balance deterministic control loops with variable tasks such as vision-based

inspection or predictive maintenance.

Power Challenges:

● Mixed workloads: Motion control needs strict timing, while AI-based inspection and optimization are

bursty.

● Harsh environments: Heat, dust, and poor airflow limit cooling.

● Safety-critical tasks: Power fluctuations cannot disrupt safety sensors or motion control.

Management Strategies:

Robots keep control loops fixed at guaranteed frequencies while dynamically adjusting accelerators for vision

and ML tasks. Power domain isolation ensures AI inference can be throttled without affecting safety-critical

control. Predictive algorithms anticipate inspection cycles and allocate power in advance.

 IPHO-Journal of Advance Research in Science And Engineering (IPHO)

Volume-03 | Issue-11 | November | 2025 https://iphopen.org/index.php/se 36

Outcomes:

 Experiments with robotic arms show that isolating power domains cuts energy use by up to 20% without

missing control deadlines. This demonstrates the importance of layered control across firmware, kernel, and

applications.

5.3 Drones and UAVs

Drones operate under the strictest energy budgets of all. Every watt saved extends flight time, yet drones must

still process high-resolution sensor data in real time to remain stable and complete missions.

Power Challenges:

● Tight energy limits: Small batteries restrict missions to minutes.

● Real-time sensing: Stabilization requires continuous low-latency feedback, while navigation demands

constant inference.

● Variable environments: Outdoor wind, temperature, and mission load affect both computation and power.

● Management Strategies: Drones use lightweight scheduling frameworks that prioritize stabilization and

navigation. Non-critical tasks such as image recording are throttled. Accelerators are power-gated when idle.

Some systems offload heavy workloads to ground stations when reliable connectivity is available.

Outcomes:

 Field tests show adaptive throttling extends flight time by 15–25% while maintaining navigation accuracy.

Hybrid designs that combine onboard AI with selective cloud offloading perform even better but rely on strong

communication links.

5.4 Comparative Insights

Looking across vehicles, robots, and drones highlights both shared principles and domain-specific differences:

● Shared Principles:
○ Layered coordination across firmware, OS, and applications is essential.

○ Safety- and mission-critical workloads always get priority.

○ Adaptive algorithms improve efficiency by anticipating workload demand.

● Domain Differences:
○ Vehicles: Large power budgets but strict thermal and safety limits.

○ Robotics: Mix deterministic real-time control with bursty AI inference.

○ Drones: Extreme energy constraints make every optimization count.

5.5 Lessons Learned

These case studies confirm that layered power management applies across domains, but strategies must be

tailored to workload patterns and environmental conditions. Firmware ensures safe isolation, bootloaders

establish stable startup, kernels perform runtime adjustments, and applications express workload priorities.

Future evaluation should include shared benchmarks that represent automotive, robotic, and drone workloads.

Such testbeds would allow fair comparison of strategies, encourage standardization, and highlight best practices

for industry adoption.

6. Future Directions and Challenges

As edge AI expands, power management must evolve beyond today’s reactive methods. Future systems will

require predictive control, stronger security, standardization, and adaptation to new workloads and energy

sources.

AI-Driven Predictive Power Control

Current systems scale frequencies only after utilization rises, which can cause latency. Predictive power control

uses AI models to forecast demand from workload history, sensor data, or thermal trends. Reinforcement

learning and neural predictors can prepare accelerators in advance and reduce frequent switching. These models

must remain lightweight and accurate under varied workloads.

Security and Reliability

Firmware and kernel power interfaces create new attack surfaces. Malicious code could disable cores or drain

batteries. Future designs must treat power control as a security boundary by validating firmware calls, isolating

untrusted applications, and enforcing cryptographic checks. Reliability also demands watchdogs, redundancy,

and safe power defaults to prevent data corruption or unstable transitions.

 IPHO-Journal of Advance Research in Science And Engineering (IPHO)

Volume-03 | Issue-11 | November | 2025 https://iphopen.org/index.php/se 37

Cross-Platform Standardization

SoCs expose power features differently, complicating software portability. Expanding PSCI/SCMI, improving

Linux frameworks like cpufreq and genpd, and building cross-vendor APIs will reduce fragmentation. Standards

must balance common interfaces with room for vendor-specific optimizations.

Evolving Workloads and Energy Sources

Workloads are shifting from vision-only inference to multi-modal tasks combining speech, vision, and sensor

fusion. Each stresses power differently, requiring allocation by workload type as well as device. At the same

time, edge devices in remote or mobile environments may rely on solar or energy harvesting. Algorithms must

adapt not only to demand but also to fluctuating supply, scaling back or boosting performance as conditions

allow.

Open Challenges

Key issues include lightweight prediction, thermal modeling, workload isolation, real-time validation, and fair

benchmarking. Addressing these will require collaboration across hardware, OS, and applications, supported by

both industry and academic research.

Conclusion

A multi-layered approach to power management addresses the major optimization challenges in modern edge AI

systems. Power is no longer a secondary issue; it is a core design requirement that spans every stage, from

firmware-level control to application-level strategies.

Coordination between application, firmware, bootloaders, and the operating system allows fine-grained power

state management across CPUs, GPUs, and accelerators. This ensures real-time performance while adapting to

workload shifts. Looking ahead, AI-driven prediction models show promise for anticipatory power control that

adjusts before performance is affected.

Industry is also working toward cross-platform standards. These create unified interfaces that support different

SoCs while still leaving room for vendor-specific optimizations. At the same time, new edge AI architectures

are introducing demands that will require more advanced solutions for managing heterogeneous processing and

dynamic workloads.

Engineers designing embedded AI systems should treat power management as a first-order constraint. Multi-

layered designs that coordinate across hardware and software abstractions, while staying flexible for changing

workloads and environments, will deliver the most efficient and reliable results.

References

1. Jonathan G Koomey et al., "Implications of Historical Trends in the Electrical Efficiency of Computing,"

ResearchGate, 2011. Available: https://www.researchgate.net/publication/224128141_Implications_of_Hist

orical_Trends_in_the_Electrical_Efficiency_of_Computing

2. Pedro García López et al., "Edge-centric Computing: Vision and Challenges," ResearchGate, 2015.

Available: https://www.researchgate.net/publication/282434420_Edge-centric_Computing

3. ARM Developer, "Arm Power State Coordination Interface Platform Design Document". Available:

https://developer.arm.com/documentation/den0022/latest/

4. Robert Love, "Linux Kernel Development," Addison-Wesley, 2010. Available: https://www.doc-

developpement-durable.org/file/Projets-informatiques/cours-&-manuels-

informatiques/Linux/Linux%20Kernel%20Development,%203rd%20Edition.pdf

5. Dominik Brodowski, "CPUFreq - CPU frequency and voltage scaling code in the Linux(TM) kernel,"

Kernel. Available: https://docs.kernel.org/cpu-freq/index.html

6. Paul E. McKenney, "Is Parallel Programming Hard, And, If So, What Can You Do About It?"

arXiv:1701.00854v6, 2023. Available: https://arxiv.org/abs/1701.00854

7. Massoud Pedram and Shahin Nazarian, "Thermal Modeling, Analysis, and Management in VLSI Circuits:

Principles and Methods," IEEE, 2006. Available: https://weble.upc.edu/ifsin/Block5/paper_proc2.pdf

8. Parthasarathy Guturu and Bharat Bhargava, "Cyber-Physical Systems: A Confluence of Cutting Edge

Technological Streams". Available: https://www.cs.purdue.edu/homes/bb/CPSReviewPaper.pdf

9. Jonathan Corbet et al., "Linux Device Drivers," lwn.net. Available: https://lwn.net/Kernel/LDD3/

10. Greg Kroah-Hartman, "Linux Kernel in a Nutshell," O’Reilly, 2006. Available: https://theswissbay.ch/pdf/

Gentoomen%20Library/Operating%20Systems/Linux/O%27Reilly%20Linux%20Kernel%20in%20a%20Nu

tshell.pdf

 IPHO-Journal of Advance Research in Science And Engineering (IPHO)

Volume-03 | Issue-11 | November | 2025 https://iphopen.org/index.php/se 38

https://www.researchgate.net/publication/224128141_Implications_of_Hist%20orical_Trends_in_the_Electrical_Efficiency_of_Computing
https://www.researchgate.net/publication/224128141_Implications_of_Hist%20orical_Trends_in_the_Electrical_Efficiency_of_Computing
https://www.researchgate.net/publication/282434420_Edge-centric_Computing
https://developer.arm.com/documentation/den0022/latest/
https://www.doc-developpement-durable.org/file/Projets-informatiques/cours-&-manuels-informatiques/Linux/Linux%20Kernel%20Development,%203rd%20Edition.pdf
https://www.doc-developpement-durable.org/file/Projets-informatiques/cours-&-manuels-informatiques/Linux/Linux%20Kernel%20Development,%203rd%20Edition.pdf
https://www.doc-developpement-durable.org/file/Projets-informatiques/cours-&-manuels-informatiques/Linux/Linux%20Kernel%20Development,%203rd%20Edition.pdf
https://docs.kernel.org/cpu-freq/index.html
https://arxiv.org/abs/1701.00854
https://weble.upc.edu/ifsin/Block5/paper_proc2.pdf
https://www.cs.purdue.edu/homes/bb/CPSReviewPaper.pdf
https://lwn.net/Kernel/LDD3/
https://theswissbay.ch/pdf/%20Gentoomen%20Library/Operating%20Systems/Linux/O%27Reilly%20Linux%20Kernel%20in%20a%20Nutshell.pdf
https://theswissbay.ch/pdf/%20Gentoomen%20Library/Operating%20Systems/Linux/O%27Reilly%20Linux%20Kernel%20in%20a%20Nutshell.pdf
https://theswissbay.ch/pdf/%20Gentoomen%20Library/Operating%20Systems/Linux/O%27Reilly%20Linux%20Kernel%20in%20a%20Nutshell.pdf

