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Abstract 

Power management is a major challenge for embedded AI systems at the network edge. These systems must 

run machine learning workloads under tight energy limits. 

 

An effective solution needs a multi-layered approach. Key elements include the Power State Coordination 

Interface (PSCI), secure firmware, and Linux kernel features for runtime control. Core techniques such as 

dynamic frequency scaling, clock gating, suspend/resume, and memory or accelerator-specific optimizations 

further improve efficiency. 

 

Environmental factors add to the challenge. Automotive and industrial systems must meet strict thermal 

limits. Battery-powered devices face even tighter energy budgets. Both require adaptive control strategies. 

From a software perspective, effective methods include specialized kernel drivers, standardized power APIs, 

and optimizations such as dynamic logic gating and real-time power monitoring. When combined, these 

enable power-efficient AI systems that maintain reliable performance while staying within thermal and 

energy boundaries. 
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1. Introduction 

AI at the network edge brings strict power management challenges for embedded systems. These platforms must 

run complex machine learning models under tight energy and thermal limits [1]. To handle this, they use 

heterogeneous SoCs that combine CPUs, GPUs, NPUs, and other accelerators. Each of these has a different 

power profile. 

 

Conventional power management methods, built for general-purpose computing, often fall short for AI 

workloads. Edge AI tasks are bursty. They shift between idle periods and intense computation. This behavior 

requires careful coordination of power states to stay efficient. In battery-powered devices, runtime and 

reliability depend directly on power use [1]. 

 

The move to edge computing makes power efficiency even more critical. Processing data locally reduces 

latency. It enables real-time decisions and lowers reliance on the cloud [2]. Applications such as autonomous 

driving, industrial automation, and smart monitoring all need consistent performance within strict power and 

timing limits. 

 

This paper explores a multi-layered approach to power management in embedded AI systems. We look at 

coordination across firmware, bootloaders, and operating systems. Standardized interfaces help synchronize 

power states across different components. We also study how dynamic resource allocation can balance 

performance, thermal limits, and energy efficiency. Finally, we present design principles for reliable and power-

optimized edge AI systems. 

 

2. Multi-Layered Power Management Architecture in AI SoCs 

 
Fig 1: Multi-Layered Power Management Architecture [3, 4] 

 

Firmware Layer 

Modern AI SoCs manage power across several abstraction levels. At the lowest level, firmware provides direct 

control over hardware. Trusted Firmware (TF-A) creates a secure environment that regulates access to voltage 

regulators, clock generators, and power domain controllers [3]. This layer acts as an isolation barrier between 

critical power functions and higher-level software. The separation keeps the system stable during complex 

power state changes across CPUs, GPUs, and accelerators. 

 

Specifications (PSCI) 

The Power State Coordination Interface (PSCI) defines standard calls between firmware and the operating 

system. These calls hide SoC-specific details and let developers write portable software across different 

platforms [3]. PSCI supports CPU idle and suspend states, cluster-level power-down, and full system shutdown 

or reset. Although hardware-agnostic, vendors can extend it with workload-aware features for AI platforms. 
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Bootloader Frameworks 

Bootloaders configure essential power settings during startup, before the OS takes control. They set voltage 

rails, program clocks, and isolate power domains needed by accelerators and memory [3]. Bootloaders also 

sequence power-on across domains and enforce safety checks to prevent damage from unstable supply 

conditions. 

 

Operating System Integration 

In heterogeneous AI SoCs, the Linux kernel manages runtime power across CPUs, GPUs, and NPUs [4]. 

Subsystems such as cpufreq, cpuidle, devfreq, and generic power domains (genpd) adjust performance points 

dynamically. Governors like schedutil raise or lower operating frequencies based on workload. The OPP and 

energy model frameworks give the kernel predictive control of voltage and frequency scaling. 

Kernel power control also includes algorithms that anticipate future demand from workload patterns. Runtime 

PM subsystems manage individual components while respecting interdependencies defined in the device tree. 

This coordination ensures stable power transitions while allowing aggressive optimization during idle periods 

[4]. Device drivers then translate abstract requests into hardware register operations for accelerators, memory 

controllers, and peripherals. 

 

Application Layer 

At the top layer, applications and policies influence how power is managed. Workloads such as vision, speech, 

or sensor fusion create highly variable demand. Middleware or safety frameworks enforce minimum 

performance levels for critical tasks. User preferences, such as performance or power-saving modes, guide 

further allocation. Together, these factors connect real-world use cases with lower-level mechanisms to balance 

efficiency and reliability. 

 

3. Core Power Management Technologies and Mechanisms 

 
Fig 2: Core Power Management Technologies [5, 6] 

 

Dynamic Resource Management 

Modern AI SoCs use advanced methods to allocate resources based on workload and system state. CPU 

frequency scaling lets processors adjust operating speed to balance performance with power limits [5]. These 

decisions rely on models of performance and energy use to keep efficiency high across different workloads. 

 

Dynamic voltage and frequency scaling (DVFS) changes both voltage and frequency across CPUs, GPUs, and 

NPUs. Feedback loops monitor thermal and performance margins to keep units efficient [5]. Clock gating adds 

another layer of savings by shutting off unused logic. This can happen at many levels, from individual gates to 

entire subsystems, depending on activity. 
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Power State Management 

Fine-grained power states allow transitions across domains while keeping the system coherent. Suspend and 

resume operations save only essential state, letting non-critical blocks enter deep low-power modes [6]. 

Algorithms weigh how much state to keep against wake-up speed and energy trade-offs. 

Multi-core systems need careful synchronization for power state changes. Caches, shared resources, and 

communication must remain consistent across cores [6]. Power domain isolation gives independent control over 

functional blocks. This prevents interference between active and inactive circuits and maintains signal integrity. 

 

AI Engine-Specific Optimizations 

AI workloads benefit from power methods tailored to neural processing. Memory controllers cut power by 

adapting to data movement patterns in inference and training. Techniques include bandwidth allocation, 

Temperature-Compensated Self-Refresh (TCSR), Fine-Granularity Refresh (FGR), per-bank refresh, and deep 

power-down modes [5]. Memory systems work with AI accelerators to anticipate access and adjust states 

proactively. 

 

AI accelerators also use workload-aware power policies. These assign power budgets based on the needs of each 

neural network layer while meeting thermal limits [6]. Power allocation frameworks use detailed models of 

consumption to predict needs from network structure and input data. 

 

4. Thermal and Power Constraints in Edge AI Applications 

 
Fig 3: Thermal and Power Constraints in Edge Al [7, 8] 

 

Environmental Challenges 

Edge AI systems face tough environmental conditions that affect both power and thermal design. Automotive 

and industrial deployments often run across extreme temperatures, so they need advanced thermal management 

to stay stable [7]. The challenge is greater in enclosed spaces with little airflow or heat dissipation. In these 

cases, thermal throttling becomes critical to balance performance while keeping core AI functions alive. 

 

Battery-powered edge devices face additional limits. Portable AI hardware must work within small energy 

reserves, which forces tradeoffs between computing power and runtime [7]. Power budgeting algorithms address 

this by giving priority to essential AI processing while cutting power to non-critical functions. Good power 

control also considers battery discharge behavior, thermal effects on the battery, and changing workload 

demands to keep efficiency high across scenarios. 

 

Application-Specific Requirements 

Autonomous vehicles bring unique challenges because their AI tasks are safety-critical. Systems for perception, 

decision-making, and control must keep running reliably despite temperature swings or heavy power demand 

[8]. The architecture must handle compute-heavy jobs like sensor fusion, object detection, and path planning in 

real time. At the same time, it has to stay thermally stable inside compact enclosures with little cooling. 

 

Industrial robots also need tailored solutions. These systems mix real-time control with machine learning. They 

must meet strict timing for motion and safety while also adapting to tasks like vision, inspection, and 

optimization [8]. Power management here must prioritize critical control functions while adjusting power for AI 

inference to cut overall consumption. 
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Adaptive Control Strategies 

Thermal-aware scaling uses sensors across the SoC to track temperature. Control logic then adjusts frequency 

and voltage to stay within safe thermal limits [7]. Predictive methods go further by anticipating when violations 

might happen and adjusting settings early to avoid performance loss. 

 

Workload-aware power allocation considers both AI patterns and compute demand. It applies dynamic budgets 

that shift power toward active tasks while keeping within thermal and energy boundaries [8]. These adaptive 

strategies allow edge AI systems to maintain performance across different environments and workloads. 

 

5. Case Studies and Evaluation of Power Management in Edge AI Systems 

Power management challenges and strategies are best understood through real-world case studies. Autonomous 

vehicles, industrial robotics, and drones each demonstrate how layered power management operates under 

different constraints. Across all domains, the guiding principle is clear: safety-critical and mission-critical 

systems must always run, while non-essential workloads can be scaled back when resources are tight. 

 

5.1 Autonomous Vehicles 

In vehicles, safety drives every power decision. Systems for perception, decision-making, and control must 

operate reliably under fluctuating workloads and thermal limits. 

 

Driving Scenario: Approaching a busy intersection 

When a vehicle approaches a busy intersection, demand on its computing stack spikes. Multiple sensors capture 

high-resolution data, and the AI pipeline must process it in real time for safe navigation. Power management 

adapts across layers to ensure responsiveness: 

● Sensor Input Surge: Cameras, LiDAR, and radar produce dense data streams. The perception pipeline 

sends workload hints through application-level QoS, such as frame deadlines. 

● Application Hints to Kernel: QoS constraints map to system-level settings like minimum CPU frequency 

or memory bandwidth. The kernel’s pm_qos interface enforces them to prepare accelerators before data 

arrives. 

● Driver Feedback: As workloads increase, accelerator drivers report utilization metrics. If load is heavy, 

they signal the devfreq governor to raise operating points. 

● Kernel-Level Adjustments: The kernel increases CPU and accelerator frequencies. The thermal framework 

caps non-critical tasks such as infotainment graphics to preserve power. 

● Firmware Enforcement: Requests pass through firmware (SCMI/PSCI). Firmware checks them against 

safety rules and ensures accelerators stay above certified minimum levels. Voltage regulators adjust 

gradually to avoid instability. 

● Sustained High Load: During the intersection, perception and planning CPUs run at elevated performance. 

Safety-critical tasks continue, while background tasks remain throttled. 

● Return to Cruise Mode: After the vehicle clears the intersection, workloads ease. Governors scale 

accelerators down, gate idle domains, and lower CPU frequencies to save energy while keeping readiness. 

This layered response, application hints, kernel governors, driver feedback, and firmware validation ensure 

safety and determinism. Critical perception and planning always get priority, while less important tasks scale 

back first. 

 

5.2 Industrial Robotics 

Industrial robots combine real-time control with machine learning workloads. Unlike vehicles, which focus 

mainly on navigation, robots must balance deterministic control loops with variable tasks such as vision-based 

inspection or predictive maintenance. 

 

Power Challenges: 

● Mixed workloads: Motion control needs strict timing, while AI-based inspection and optimization are 

bursty. 

● Harsh environments: Heat, dust, and poor airflow limit cooling. 

● Safety-critical tasks: Power fluctuations cannot disrupt safety sensors or motion control. 

 

Management Strategies: 

Robots keep control loops fixed at guaranteed frequencies while dynamically adjusting accelerators for vision 

and ML tasks. Power domain isolation ensures AI inference can be throttled without affecting safety-critical 

control. Predictive algorithms anticipate inspection cycles and allocate power in advance. 
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Outcomes: 

 Experiments with robotic arms show that isolating power domains cuts energy use by up to 20% without 

missing control deadlines. This demonstrates the importance of layered control across firmware, kernel, and 

applications. 

 

5.3 Drones and UAVs 

Drones operate under the strictest energy budgets of all. Every watt saved extends flight time, yet drones must 

still process high-resolution sensor data in real time to remain stable and complete missions. 

 

Power Challenges: 

● Tight energy limits: Small batteries restrict missions to minutes. 

● Real-time sensing: Stabilization requires continuous low-latency feedback, while navigation demands 

constant inference. 

● Variable environments: Outdoor wind, temperature, and mission load affect both computation and power. 

● Management Strategies: Drones use lightweight scheduling frameworks that prioritize stabilization and 

navigation. Non-critical tasks such as image recording are throttled. Accelerators are power-gated when idle. 

Some systems offload heavy workloads to ground stations when reliable connectivity is available. 

 

Outcomes: 

 Field tests show adaptive throttling extends flight time by 15–25% while maintaining navigation accuracy. 

Hybrid designs that combine onboard AI with selective cloud offloading perform even better but rely on strong 

communication links. 

 

5.4 Comparative Insights 

Looking across vehicles, robots, and drones highlights both shared principles and domain-specific differences: 

 

● Shared Principles: 
○ Layered coordination across firmware, OS, and applications is essential. 

○ Safety- and mission-critical workloads always get priority. 

○ Adaptive algorithms improve efficiency by anticipating workload demand. 

● Domain Differences: 
○ Vehicles: Large power budgets but strict thermal and safety limits. 

○ Robotics: Mix deterministic real-time control with bursty AI inference. 

○ Drones: Extreme energy constraints make every optimization count. 

 

5.5 Lessons Learned 

These case studies confirm that layered power management applies across domains, but strategies must be 

tailored to workload patterns and environmental conditions. Firmware ensures safe isolation, bootloaders 

establish stable startup, kernels perform runtime adjustments, and applications express workload priorities. 

Future evaluation should include shared benchmarks that represent automotive, robotic, and drone workloads. 

Such testbeds would allow fair comparison of strategies, encourage standardization, and highlight best practices 

for industry adoption. 

 

6. Future Directions and Challenges 

As edge AI expands, power management must evolve beyond today’s reactive methods. Future systems will 

require predictive control, stronger security, standardization, and adaptation to new workloads and energy 

sources. 

 

AI-Driven Predictive Power Control 

Current systems scale frequencies only after utilization rises, which can cause latency. Predictive power control 

uses AI models to forecast demand from workload history, sensor data, or thermal trends. Reinforcement 

learning and neural predictors can prepare accelerators in advance and reduce frequent switching. These models 

must remain lightweight and accurate under varied workloads. 

 

Security and Reliability 

Firmware and kernel power interfaces create new attack surfaces. Malicious code could disable cores or drain 

batteries. Future designs must treat power control as a security boundary by validating firmware calls, isolating 

untrusted applications, and enforcing cryptographic checks. Reliability also demands watchdogs, redundancy, 

and safe power defaults to prevent data corruption or unstable transitions. 
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Cross-Platform Standardization 

SoCs expose power features differently, complicating software portability. Expanding PSCI/SCMI, improving 

Linux frameworks like cpufreq and genpd, and building cross-vendor APIs will reduce fragmentation. Standards 

must balance common interfaces with room for vendor-specific optimizations. 

 

Evolving Workloads and Energy Sources 

Workloads are shifting from vision-only inference to multi-modal tasks combining speech, vision, and sensor 

fusion. Each stresses power differently, requiring allocation by workload type as well as device. At the same 

time, edge devices in remote or mobile environments may rely on solar or energy harvesting. Algorithms must 

adapt not only to demand but also to fluctuating supply, scaling back or boosting performance as conditions 

allow. 

 

Open Challenges 

Key issues include lightweight prediction, thermal modeling, workload isolation, real-time validation, and fair 

benchmarking. Addressing these will require collaboration across hardware, OS, and applications, supported by 

both industry and academic research. 

 

Conclusion 

A multi-layered approach to power management addresses the major optimization challenges in modern edge AI 

systems. Power is no longer a secondary issue; it is a core design requirement that spans every stage, from 

firmware-level control to application-level strategies. 

 

Coordination between application, firmware, bootloaders, and the operating system allows fine-grained power 

state management across CPUs, GPUs, and accelerators. This ensures real-time performance while adapting to 

workload shifts. Looking ahead, AI-driven prediction models show promise for anticipatory power control that 

adjusts before performance is affected. 

 

Industry is also working toward cross-platform standards. These create unified interfaces that support different 

SoCs while still leaving room for vendor-specific optimizations. At the same time, new edge AI architectures 

are introducing demands that will require more advanced solutions for managing heterogeneous processing and 

dynamic workloads. 

 

Engineers designing embedded AI systems should treat power management as a first-order constraint. Multi-

layered designs that coordinate across hardware and software abstractions, while staying flexible for changing 

workloads and environments, will deliver the most efficient and reliable results. 
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